C++isfun-Part 17

at Turbine/Warner Bros.!

Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files — April 8-10

4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game Al algorithms April 15-17

Project 1 Due — April 17

5) More Al: search, heuristics, optimization, decision trees, supervised/unsupervised
learning — April 22-24

6) Game API and/or event-oriented programming, model view controller, map reduce
filter — April 29, May 1

7) Basic threads models and some simple databases SQLite May 6-8

8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15

9) Threads, Atomic, and Exceptions, more May 20

10) Gesture recognition & depth controllers like the Microsoft Kinect, Network
Programming & TCP/IP, OSC May 27

11) Selected Topics June 3

12) Working on student projects - June 10

Final project presentations Project 3/Final Project Due June 10

Cinder, Open FrameWorks, and OSC!

¢
. loody And Blunt (V‘

Eyes Are Mosaics

by Bloom

Planetary is a stunningly beautiful

way to explore your music collection,

available on iPad. Fly through a 3D ’ 4
- / The Moon And The Melodies

universe dynamically created by
information about the recording

artists you love.

VIEW >

by The Mill

Arear projected, 5'x 3’ multi-touch
interactive screen made entirely of
switchable glass featuring the full

history and portfolio of The Mill.

VIEW >

sherran

Traeran

What was that?! AA

#include "cinder/app/AppBasic.h"
#include "cinder/Rand.h"
#include "cinder/Vector.h"
#include "ParticleController.h"

using namespace ci;
using std::list;

ParticleController::ParticleController(){}

ParticleController::ParticleController(int res)

{
mXRes = app::getWindowWidth()/res;
mYRes = app::getWindowHeight()/res;
for(int y=0; y<mYRes; y++){
for(int x=0; x<xmXRes; x++){
addParticle(x, y, res);
}
}
}

void ParticleController::update(const Channel32f &channel, const Vec2i &mouseloc)
{
for(list<Particle>::iterator p = mParticles.begin(); p != mParticles.end(); ++p){
p->update(channel, mouseloc);

}
}

void ParticleController::draw()

{

for(list<Particle>::iterator p = mParticles.begin(); p != mParticles.end(); ++p){
p->draw();

Source code in:
“17. Cinder, OSC, Open Frameworks/
Ch 3 Particle Tutorial src”

#include "Particle.h"

#include "cinder/Rand.h"
#include "cinder/gl/gl.h"

#include "cinder/app/AppBasic.h"

using namespace ci;

Particle::Particle()

{
}

Particle::Particle(Vec2f loc)

{

}

mlLoc =loc;

mDir = Rand::randVec2f();
mDirToCursor = Vec2f::zero();

mVel = 0.0f;

mRadius = 0.0f;

mScale =3.0f;

void Particle::update(const Channel32f &channel, const Vec2i &mouseloc)

{

}

mDirToCursor = mouseloc - mLoc;

float distToCursor = mDirToCursor.length();

float time = app::getElapsedSeconds();
float dist = distToCursor * 0.025f;
float sinOffset =sin(dist - time) + 1.0f;

mDirToCursor.normalize();

mDirToCursor *= sinOffset * 100.0f;

Vec2f newloc = mLoc + mDirToCursor;

newloc.x = constrain(newLoc.x, 0.0f, channel.getWidth() - 1.0f);
newloc.y = constrain(newLoc.y, 0.0f, channel.getHeight() - 1.0f);
mRadius = channel.getValue(newLoc) * mScale;

void Particle::draw()

{

//gl::color(Color(1.0f, 1.0f, 1.0f));
//gl::drawVector(Vec3f(mLoc, 0.0f), Vec3f(mLoc + mDirToCursor * 15.0f, 0.0f), 6.0f, 3.0f);

ol-:drawSnlidCirclal ml ac + mDirTaCiirear ¥ N 2f mRadinc -

#include "cinder/app/AppBasic.h"
#include "cinder/ImagelO.h"
#include "cinder/gl/Texture.h"
#tinclude "cinder/Channel.h"
#tinclude "cinder/Vector.h"
#include "ParticleController.h"

// RESOLUTION refers to the number of pixels

// between neighboring particles. If you increase

// RESOULTION to 10, there will be 1/4th as many particles.
// Setting RESOLUTION to 1 will create 1 particle for

// every pixel in the app window.

#define RESOLUTION 5

using namespace ci;
using namespace ci::app;

class TutorialApp : public AppBasic {

public:
void prepareSettings(Settings *settings);
void keyDown(KeyEvent event);
void mouseMove(MouseEvent event);
void mouseDrag(MouseEvent event);
void setup();
void update();
void draw();

Channel32f mChannel;
gl::Texture mTexture;

Vec2i mMouseloc;
ParticleController mParticleController;

bool mDrawParticles;
bool mDrawlmage;

|5

void TutorialApp::prepareSettings(Settings *settings)
{

settings->setWindowSizel 00. 600):

Source code in:
“17. Cinder, OSC, Open Frameworks/
Ch 4 src”

CREATING PARTICLES WITH MOUSE EVENTS

We are going to need to beef up our mouse related code. First up, we will add mouseDown() and mouseUp() methods to our project. We will
also make a boolean that will keep track of whether a mouse button is pressed.

void mouseDown(MouseEvent event);

void mouseUp(MouseEvent event);

bool mIsPressed;

If any mouse button is pressed, mouseDown() will fire. Inside that function, all we do is set mIsPressed to true. If mouseUp() is called,
mlsPressedwill be set to £alse. Easy enough.

void TutorialApp::mouseDown(MouseEvent event) {

mIsPressed = true;

}

void TutorialApp::mouseUp(MouseEvent event) {
mIsPressed = false;

}

Finally, in our App class update() method, we add an i £ statement that checks to see if mIsPressed is true. If it is, then have the
ParticleControcller make some new Particles.

if(mIsPressed)

mParticleController.addParticles(5, mMouseLoc);

We have gone ahead and changed the addParticles () methodin ParticleController to take both the number of Particles we want as
well as the location where we want to initially put them.

You might be thinking, "Hey, wait. If we make 5 particles and place all of them at the location of the cursor, we will only see 1 particle." We
remedy this situation by adding a random vector to the location when we create the new pParticle.

void ParticleController::addParticles(int amt, const Vec2i &mouseLoc) {

for(int i=0; i<amt; i++) {

Vec2f randVec = Rand::randVec2f() * 10.0f;

mParticles.push_back(Particle(mouseLoc + randVec));

}

}

PARTICLE DEATH

If we allow every Particle to live forever, we will very quickly start dropping frame rate as hundreds of thousands of Particles begin to
accumulate. We need to kill off Particles every now and then. Or more accurately, we need to allow Particles to say when they are ready to
die. We do this by keeping track of a Particle's age.

Every Particle is born with an age of 0. Every frame it is alive, it adds 1 to its age. If the age is ever greater than the life expectancy, then the
Particle dies and we get rid of it. First, lets add the appropriate variables to our Particle class. We need an age, a lifespan, and a boolean
that is set to true if the age ever exceeds the lifespan.

int mAge;

int mLifespan;

bool mIsDead;

Be sure to initialize mAge to 0 and mLi fespan to a number that makes sense for your project. We are going to allow every Particle to live
until the age of 200. In our Particle's update () method, we increment the age and then compare it to the lifespan.

mAge++;

if(mAge > mLifespan)

mIsDead = true;

Just having a Particle say "Im dead" is not quite enough. We need to also have the ParticleController clean up after the dead and
remove them from the 1ist of Particles. If youlookbackat the ParticleController update () method, you see we are already iterating
through the full list of Particles. We can put our death-check there.

for(list<Particle>::iterator p = mParticles.begin(); p != mParticles.end();){

if(p->mIsDead) {

p = mParticles.erase(p);

}

else {

p->update(channel, mouseLoc);

++p;

}

}

Want a job doing C++? Better know some keywords and be able to talk

about them
Job Title: C++ Application Integration
Job Description:
The Job Description is as follows:
-->Application Integration(L3)-
-->Batch Processing(L3)-Candidate skills include: Design of batch scripts and jobs Analysis of batch scripts and jobs Monitoring and
Trouble shooting
-->Unix Application Programming(L4)-Networking Protocols, Advanced signal handling(concept of signal masks,signal sets, POSIX
signal handling, race conditions etc), Timers, resource limits, Unix debugging and tracing features Advanced unix user space
commands (archival/restore, SCM, cron etc) Concept of threads, multithreading, advanced i/o, file and record locking Advanced
system design, Knowledge of unix variants, porting considerations etc Performance tuning and optimization

-->C++(L2)-Should be working in a C++ Project. Should be aware of the following concepts in C++ 1) Pointers, references, arrays,
temporaries, Ivalue, rvalue 2)Polymorphism, static/dynamic binding, pure virtual functions & abstract class3) Operator overloading,
function overloading, default arguments, friend functions 4) C++I/0, C++ File /O, Stream manipulators 5) Able to convert a problem
statement into pseudo code / algorithm and implement the same in C++.

-->C++(L3)-Should be working in a C++ Project. Should be aware of the

following concepts in C++ 1) Basics of Exception Handling 2) Namespaces, dynamic_cast, static_cast, const_cast, typeid & RTTI 3) C++
Containers, String Class, Basics of algorithms & iterators, Basics of Function objects

4) Template functions and classes, Basics of: Template Parameters, Restrictions on type parameters, template argument deduction,
explicit and implicit instantiation, typename keyword 5) Class template specialization, default template arguments, Partial
Specialization 6) Template Compilation Models, Inclusion model, Separation Model 7) Function templates overloading, function
template specialization 8) smart pointers / auto_ptr 9) Data Structures and Memory management in C++, different flavors of operator

new 10) Familiarity with development and debugging on a particular platform using appropriate tools 11) Familiarity with static
analysis tools like DeepCheck, C++ test etc.

-->Application Testing(L3)-Should be able to differentiate the different testing phases like Unit Integration, System, Acceptance,
Regression testing and should be capable to perform these tests with the help of ready-test cases. Should understand Test Plans,
Requirement Traceability Matrix, Orthogonal Array Tool. Should be able to do metrics analysis and reliability analysis effectively with
DFA tool.

Education: Bachelors Degree Experience

Level : 5-8 YEAR

View:
osc openFrameworks application-a92g-Qw22f4.mp4

using namespace ci;
using namespace ci::app;
using namespace std;

class OSCSenderApp : public AppNative {

public:

|3

void setup();

void update();

void draw();

void mouseMove(MouseEvent event);
void mouseDrag(MouseEvent event);

int mMouselocX;
osc::Sender sender;

float positionX;
std::string host;

int port;

void OSCSenderApp::setup()

{

}

mMouselocX = getWindowCenter().x;
port = 3000;

In the Google Drive:
OSCSenderApp.cpp

// assume the broadcast address is this machine's IP address but with 255 as the final value

// so to multicast from IP 192.168.1.100, the host should be 192.168.1.255

host = System::getlpAddress();
if(host.rfind('.") = string::npos)

host.replace(host.rfind(".') + 1, 3, "255");

sender.setup(host, port, true);

void OSCSenderApp::update()

{

float freq = mMouselocX / (float)getWindowWidth() * 10.0f;
positionX = cos(freq * getElapsedSeconds()) / 2.0f + .5f;

osc::Message message;
message.addFloatArg(positionX);
message.setAddress("/cinder/osc/1");
message.setRemoteEndpoint(host, port);

#include "cinder/app/AppNative.h"

using namespace ci;
using namespace ci::app;

#tinclude "Osclistener.h"

class OSClListenerApp : public AppNative {
public:
void setup();
void update();
void draw();

osc::Listener listener;

float

2

void OSCListenerApp::setup()

{
listener.setup(3000);
positionX = 0;

}

void OSCListenerApp::update()
{

positionX;

while(listener.hasWaitingMessages()) {
osc::Message message;
listener.getNextMessage(&message);

console() << "New message received" << std::endl;
console() << "Address: " << message.getAddress() << std::endl;
console() << "Num Arg: " << message.getNumArgs() << std::endl;

for (inti=0; i< message.getNumArgs(); i++) {

message.getArgAsint32(i) << std::endl;

console() << "-- Argument " << i << std::end|;

console() << "---- type: " << message.getArgTypeName(i) << std::endl;

if(message.getArgType(i) == osc::TYPE_INT32) {

try {

ratrh [

\J

console() << "

value: "<<

In the Google Drive:
OSClListenerApp.cpp

More topics in Cinder!

SECTION TWO: FLOCKING SIMULATION

Chapter 1: Camera and Parameters

We will learn about the Cinder Camera class
and use it to create a 3D environment for the
Particle engine we made in Section One. Then
we will show how to setup a Params class for
controlling variables during runtime.

Chapter 2: Rule One - Separation

The first rule of flocking is described and
implemented. This rule states that all flocking
objects should avoid getting too close to each
other. This helps to mitigate overcrowding and
collisions.

Chapter 3: Rule Two - Cohesion
The second rule is one of attraction. Flocking
objects will move towards each other in order

CAMERA

In the previous tour, we only concerned ourselves with a 2D view of the Particles. They existed in their flatland, oblivious to the third
dimension. It is time to throw an extra dimension at our Particles to see how they will behave in a 3D space. The best place to start in our new
3D project is the Cinder Camera class.

First, the include:

#include "cinder/Camera.h"

Then in the main class, we create a CameraPersp.
CameraPersp mCam;

The perspective Camera (as opposed to the orthographic Camera) is the standard way to move around in a virtual space. To describe our
perspective Camera lens, we will use the setPerspective() method. Also note we prefix our member variables with the letter 'm' versus local
variables which have no prefix. This is simply to make the code more readable later on. When you see variables with the 'm' prefix, you
instantly know you are dealing with a member variable.

mCam.setPerspective(60.0f, getWindowAspectRatio(), 5.0f, 3000.0f);

The camera's setPerspective() method takes four parameters. First is the horizontal Field Of View. The smaller the number, the tighter the
viewing frustum. (T usually choose a number between 60.0 and 90.0. There is some debate about the FOV of the human eye. It is estimated to
be around 60 but the eye is very accommodating so this number varies. Also, if you take into account peripheral vision and the fact we have
two eyes, the estimate would be as high as 140 to 180.)

The second parameter is the aspect ratio of the application window. Cinder provides the getWindowAspectRatio() convenience method for
getting the aspect ratio. If you prefer, you can calculate this yourself by taking the window width and dividing it by the window height.

The third and fourth parameters are for the clipping planes. The easiest way to think of it is this: Don't draw anything that is closer than the
near clipping plane and dont draw anything that is further away than the far clipping plane. Since we are just looking at a bunch of particles that
exist in a relatively confined area, we will choose values for the clipping plane that will accommodate our particles without also paying attention
to a bunch of extra space where particles will likely never go. No reason to look all the way to infinity if nothing ever wanders more than 500
units from the camera.

Flocking
- Scene_Rotation Q:{Q0.0..
S -

RS

Eye Dist?ice 550
Center Gravity
Keys: s w

-

Here is our camera setup explaining the setPerspective() parameters. Everything in the viewing volume will be shown in the application
window.

ASPE
Cr RATIO “ %
HEiGhy
HEiGky

Now that we have defined our camera, all that is left is for us to tell it where to be and where to look. This is definitely easier than it sounds but
it will take a few lines to get it all squared away. First we need to create a Vec3fs for each of the three vectors the CameraPersp is expecting.

mEye = Vec3f(0.0f, 0.0f, 500.0f);
mCenter = Vec3f::zero();
mUp = Vec3f::yAxis();

PARAMS

Hopefully by now you have played around with the Params class built around the AntTweakBar by Antisphere. Params allows for an easy way
to adjust variables in runtime with a minimal amount of setup. It really is surprisingly easy.

#include "cinder/params/Params.h"

After the include, make a new cinder::params::InterfaceGl InterfaceGl called mParams. It has three initial parameters: title, size and color
(optional).

params: :InterfaceGl mParams;
mParams = params::InterfaceGl("Flocking", Vec2i(225, 200));

All we need now is to give it a reference of the variable we wish to control at runtime. In our case, we want a whole new variable that we can use
to rotate the scene. We are going to invoke the power of the mighty Quaternion. Don't be scared, you don't need to know the math behind the
quaternion to enjoy some of the benefits.

Quatf mSceneRotation;

Then in setup(), after we initialize mParams, we add the following line.
mParams.addParam("Scene Rotation", &mSceneRotation);

With this line, now have the ability to control mSceneRotation in runtime using the mParams window. When adding a new tweakable
parameter to your InterfaceGl instance, the addParam() method is expecting the memory address of your variable so it know where to look for
its value. That's what the C++ Address-of operator (&) does. It grabs the memory address of a variable. Since we are asking mParams to give us
control of a quaternion, it automatically does the right thing and gives us an arc-ball.

[E Flocking 0

EHScene Rotation Q={x:0.14,y:0.20,z:-0.10,5:0.97}

-

mCam.lookAt(mEye, mCenter, mUp);
gl::setMatrices(mCam);
gl::rotate(mSceneRotation);

When you click and drag in the params arc-ball miniwindow, the entire scene will rotate. Cinder does have an Arcball class which is explained in
the ArcballDemo project in the samples folder. If you want more control over the arc-ball, that would be the place to start.

VIEWABLE AREA

SCENE ROTATION

. CENTER
o]

#include "cinder/app/AppBasic.h"
#include "cinder/Vector.h"
#include "cinder/Utilities.h"
#include "cinder/params/Params.h"
#include "cinder/Camera.h"
#include "ParticleController.h"

#define NUM_INITIAL_PARTICLES 500

using namespace cij;
using namespace ci::app;

class FlockingApp : public AppBasic {
public:
void prepareSettings(Settings *settings);
void setup();
void update();
void draw();

// PARAMS

params::InterfaceGlRef mParams;

// CAMERA

CameraPersp mCam;

Quatf mSceneRotation;
float mCameraDistance;
Vec3f mEye, mCenter, mUp;

ParticleController mParticleController;

bool mCentralGravity;

};

void FlockingApp::prepareSettings(Settings *settings

{
settings->setWindowSize(1280, 720);
settings->setFrameRate(60.0f);

void FlockingApp::setup()
{

false;

mCentralGravity

// SETUP CAMERA
mCameraDistance
mEye

500.0f;

Vec3f(0.0f, 0.0f, mCameraDistance);

mCenter Vec3f::zero();

mUp Vec3f::yAxis();

mCam.setPerspective(75.0f, getWindowAspectRatio(), 5.0f, 2000.0f);

// SETUP PARAMS

mParams = params::InterfaceGl::create("Flocking", Vec2i(200, 160));

mParams->addParam("Scene Rotation", &mSceneRotation, "opened=1");

mParams->addSeparator();

mParams->addParam("Eye Distance'", &mCameraDistance, "min=50.0 max=1500.0 step=50.0 keyIncr=s keyDecr=w");
mParams->addParam("Center Gravity", &mCentralGravity, "keyIncr=g");

// CREATE PARTICLE CONTROLLER
mParticleController.addParticles(NUM_INITIAL_PARTICLES);

}

void FlockingApp::update()

{
// UPDATE CAMERA
mEye = Vec3f(0.0f, 0.0f, mCameraDistance);
mCam. lookAt(mEye, mCenter, mUp);
gl::setMatrices(mCam);
gl::rotate(mSceneRotation);

// UPDATE PARTICLE CONTROLLER
if(mCentralGravity) mParticleController.pullToCenter(mCenter);
mParticleController.update();

}

void FlockingApp::draw()

{
gl::clear(Color(@, @, 0.01f), true);
gl::enableDepthRead();
agl::enableDepthWrite();

// DRAW PARTICLES
glColordf(ColorA(1.0f, 1.0f, 1.0f, 1.0f));
mParticleController.draw();

// DRAW PARAMS WINDOW
mParams->draw();

#include "cinder/app/AppBasic.h"
#include "cinder/Rand.h"
#include "cinder/Vector.h"
#include "ParticleController.h"

using namespace ci;
using std::list;

ParticleController::ParticleController()

{
!
void ParticleController::pullToCenter(const ci::Vec3f ¢er)
{
for(list<Particle>::iterator p = mParticles.begin(); p != mParticles.end(); ++p) {
p->pullToCenter(center);
!
}
void ParticleController::update()
{
for(list<Particle>::iterator p = mParticles.begin(); p != mParticles.end(); ++p) {
p->update();
}
}
void ParticleController::draw()
{
for(list<Particle>::iterator p = mParticles.begin(); p != mParticles.end(); ++p) {
p->draw();
}
}

void ParticleController::addParticles(int amt)
{
for(int i=0; i<amt; i++) {
Vec3f randVec = Rand::randVec3f();
Vec3f pos = randVec * Rand::randFloat(50.0f);
Vec3f vel = randVec * Rand::randFloat(5.0f);
mParticles.push_back(Particle(pos, vel));

#Include “cinder/app/AppBasic.n”
using namespace ci;

Particle::Particle()

{
}
Particle::Particle(Vec3f pos, Vec3f vel)
{
mPos = pos;
mVel =vel;
mAcc = Vec3f::zero();
mRadius = 2.0f;
mDecay = 0.99f;
}
void Particle::pullToCenter(const Vec3f ¢er)
{
Vec3f dirToCenter = mPos - center;
float distToCenter = dirToCenter.length();
float maxDistance = 300.0f;
if(distToCenter > maxDistance){
dirToCenter.normalize();
float pullStrength = 0.0001f;
mVel -= dirToCenter * ((distToCenter - maxDistance) * pullStrength);
}
}

void Particle::update(){
mVel += mAcc;
mPos += mVel;
mVel *= mDecay;
mAcc = Vec3f::zero();
}
void Particle::draw()
{
gl::drawSphere(mPos, mRadius, 16);
}

What is open frameworks and why
ShOUId yOU Ca FE? (Btwwikipedia isuseful)

History [edit]

OpenFrameworks v0.01 was released by Zachary Lieberman on August 3, 2005. By
February 2006, version v0.03 was in use by Lieberman's students at the Parsons School
of Design, New York City. According to its authors, openFrameworks was developed:

(for) folks using computers for creative, artistic expression, and who would like
low level access to the data inside of media in order manipulate, analyze or
explore. That audience we felt was significantly underserved by the current crop

. . [1] -
of C++ libraries. openFrameworks running the OpenCV &
add-on example.

Related projects [edit]

Its emphasis on "creative" uses draws parallels to Processing as both projects present a simplified interface to powerful libraries for
media, hardware and communication. openFrameworks's main difference from Processing is that it is written in C++, instead of
Java. Users will find many similarities between the two libraries, for example what is beginShape() in Processing is ofBeginShape()
in openFrameworks. The openFrameworks wiki includes an article for people coming to openFrameworks from Processing.lz]

Another similar project is Cinder, which is also a C++ library framework for creative programming. The primary difference is that
openFrameworks has a larger number of dependencies on open source libraries, allowing advanced programmers more control
and transparency, while Cinder is more dependent on libraries built into the operating systems it sits on top of, which generally
means updates and bug fixes are more frequent and reliable.

o

circle rectangles transparency lines
press “g” to toggle smoothness

/l

void testApp::draw(){

// circles

//let's draw a circle:

ofSetColor(255,130,0);

float radius = 50 + 10 * sin(counter);

ofFill(); // draw "filled shapes"
ofCircle(100,400,radius);

// now just an outline
ofNoFill();
ofSetHexColor(0xCCCCCC);
ofCircle(100,400,80);

// use the bitMap type
// note, this can be slow on some graphics cards
// because it is using glDrawPixels which varies in

// speed from system to system. try using ofTrueTypeFont

// if this bitMap type slows you down.
ofSetHexColor(0x000000);
ofDrawBitmapString("circle", 75,500);

// rectangles
ofFill();
for (inti=0;i<200; i++){

In the Google Drive:
OpenFrameworks Graphics src

ofSetColor((int)ofRandom(0,255),(int)ofRandom(0,255),(int)ofRandom(0,255));
ofRect(ofRandom(250,350),0fRandom(350,450),0fRandom(10,20),ofRandom(10,20));

}
ofSetHexColor(0x000000);
ofDrawBitmapString("rectangles", 275,500);

// transparency
ofSetHexColor(Ox00FF33);
ofRect(400,350,100,100);

// alpha is usually turned off - for speed puposes. let's turn it on!

ofEnableAlphaBlending();
ofSetColor(255,0,0,127); // red, 50% transparent
ofRect(450,430,100,33);

ofSetColor(255,0,0,(int)(counter * 10.0f) % 255); // red, variable transparent

Lots of “add ons” included in
OpenFrameworks including

Video

PDF

OSC

OpenCV (Computer Vision)
SVG reader

Etc.

PDF OUTPUT EXAMPLE

press r to start pdf multipage rendering
press = to save a single screenshot as pdf to disk

Images can also be embedded into pdf

drop images here

drop images here

TTF Font embdedded into pdf as vector shapes

Current Frame: 1981

Save Screen as PDF

!/l
void testApp::draw(){
if(oneShot }{
ofBeginSaveScreenAsPDF("screenshot-"+ofGetTimestampString()+".pdf", false);
}
ofSetColor(54);

ofDrawBitmapString("PDF OUTPUT EXAMPLE", 32, 32);
if(pdfRendering){
ofDrawBitmapString("press r to stop pdf multipage rendering", 32, 92);
lelse{
ofDrawBitmapString("press r to start pdf multipage rendering\npress s to save a single screenshot as pdf
to disk", 32, 92);
}

ofFill();
ofSetColor(54,54,54);
ofDrawBitmapString("TTF Font embdedded into pdf as vector shapes", 32, 460);

if(oneShot | | pdfRendering){
font.drawStringAsShapes("Current Frame: ", 32, 500);
ofSetColor(245, 58, 135);
font.drawStringAsShapes(of ToString(ofGetFrameNum()), 32 + font.getStringBoundingBox("Current
Frame: ", 0, 0).width + 9, 500);
lelse{
font.drawString("Current Frame: ", 32, 500);
ofSetColor(245, 58, 135);
font.drawString(of ToString(ofGetFrameNum()), 32 + font.getStringBoundingBox("'Current Frame: ", 0, 0).width + 9, 500);

The first project to OpenCV
1. Creating a Project

We assume that Microsoft Visual C + + 2008 Express Edition
and OpenCV 2.1 is already installed.

1. Run V52008

2. Create a console project

File - New - Project - Win32 Console Application,
in the Name enter Project1, click OK.

3. Set up the path

Alt + F7 - opens the project properties

Configuration Properties - C / C + + - General - Additional Include Directories,
where we put the value "C: \ Program Files \ OpenCV2.1 \ include \ opencv";

Linker - General - Additional Library Directories, where we put the value of
C:\ Program Files \ OpenCV2.1 \lib \

Linker - Input - Additional Dependencies -
cv210.lib cvaux210.lib cxcore210.lib cxts210.lib highgui210.lib for Release,
cv210d.lib cvaux210d.lib cxcore210d.lib cxts210.lib highgui210d.lib for Debug

The first project to OpenCV
2. Reading the image and display it on screen

1. Preparing the input data:
file http://www.fitseniors.org/wp-content/uploads/2008/04/green_apple.jpg
write in C:\ green_apple.jpg

2. Writing in Project1.cpp:
Include "stdafx.h"

Include "cv.h"”

Include "highgui.h"
using namespace cv;

int main (int argc, const char ** argv)

Mat image imread ("C:\\green_apple.jpg");// Load image from disk
imshow ("image", image); // Show image

waitKey (0); // Wait for keystroke

return 0;

}

3. Press F7 - compilation, F5 - run.
The program will show the image in the window and by pressing any key will complete its
work.

The first project to OpenCV
3. Linear operations on images

Replace the text in the main from the previous
for example:

int main (int arge, const char ** argv)

{
Mat image = imread ("C:\\green_apple.jpg");

// Image1 pixel by pixel is equal to 0.3 * image
Mat image1 = 0.3 * image;

imshow ("image", image);

imshow ("image1", image1);

waitKey (0);

return 0;

}

tinclude "ofMain.h"
#include "ofxOpenCv.h"
#include "ofxNetwork.h"

#include "ofxOsc.h" A n d rT] O re a d d _O n S
//#include "ofxSynth.h"

#include "ofxXmlSettings.h"

#include "ofx3DModellLoader.h"

#include "ofxAssimpModelLoader.h"
#include "ofxThreadedlmagelLoader.h"

class testApp : public ofBaseApp{
public:
void setup();
void update();
void draw();
void keyPressed(int key);
void keyReleased(int key);
void mouseMoved(int x, int y);
void mouseDragged(int x, int y, int button);
void mousePressed(int x, int y, int button);
void mouseReleased(int x, int y, int button);
void windowResized(int w, int h);
void dragEvent(ofDraginfo draginfo);
void gotMessage(ofMessage msg);

// we don't actually use these
// just checking to see if they
// all work in the same place :)

ofxCvGrayscalelmage cvGray;

ofxTCPClient client;

ofxTCPServer server;

ofxOscSender osc_sender;

ofxXmlSettings settings;

ofx3DModelLoader modelLoader;
ofxAssimpModelLoader betterModelLoader;
//ofxSynth synth;

ofxThreadedIlmagelLoader threadedLoader;

Final project presentations June 10 at Turbine!

How are things coming together?

Syllabus

10) Gesture recognition & depth controllers like the Microsoft Kinect, Network
Programming & TCP/IP, OSC May 27

11) Selected Topics June 3

12) Working on student projects - June 10

Final project presentations Project 3/Final Project Due June 10

